Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255870

RESUMO

Biomass yield is one of the important traits of sorghum, which is greatly affected by leaf morphology. In this study, a lobed-leaf mutant (sblob) was screened and identified, and its F2 inbred segregating line was constructed. Subsequently, MutMap and whole-genome sequencing were employed to identify the candidate gene (sblob1), the locus of which is Sobic.003G010300. Pfam and homologous analysis indicated that sblob1 encodes a Cytochrome P450 protein and plays a crucial role in the plant serotonin/melatonin biosynthesis pathway. Structural and functional changes in the sblob1 protein were elucidated. Hormone measurements revealed that sblob1 regulates both leaf morphology and sorghum biomass through regulation of the melatonin metabolic pathway. These findings provide valuable insights for further research and the enhancement of breeding programs, emphasizing the potential to optimize biomass yield in sorghum cultivation.


Assuntos
Melatonina , Sorghum , Sorghum/genética , Biomassa , Melhoramento Vegetal , Grão Comestível
2.
J Exp Bot ; 75(5): 1565-1579, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976240

RESUMO

Receptor-like kinases (RLKs) are major regulators of the plant immune response and play important roles in the perception and transmission of immune signals. RECEPTOR LIKE KINASE 902 (RLK902) is at the key node in leucine-rich repeat receptor-like kinase interaction networks and positively regulates resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. However, the function of RLK902 in fungal disease resistance remains obscure. In this study, we found that the expression levels of OsRLK902-1 and OsRLK902-2, encoding two orthologues of RLK902 in rice, were induced by Magnaporthe oryzae, chitin, and flg22 treatment. osrlk902-1 and osrlk902-2 knockout mutants displayed enhanced susceptibility to M. oryzae. Interestingly, the osrlk902-1 rlk902-2 double mutant exhibited similar disease susceptibility, hydrogen peroxide production, and callose deposition to the two single mutants. Further investigation showed that OsRLK902-1 interacts with and stabilizes OsRLK902-2. The two OsRLKs form a complex with OsRLCK185, a key regulator in chitin-triggered immunity, and stabilize it. Taken together, our data demonstrate that OsRLK902-1 and OsRLK902-2, as well as OsRLCK185 function together in regulating disease resistance to M. oryzae in rice.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Magnaporthe , Oryza , Resistência à Doença/genética , Complexo Antígeno-Anticorpo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Quitina/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Magnaporthe/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Arabidopsis/metabolismo
3.
BMC Plant Biol ; 22(1): 567, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471245

RESUMO

BACKGROUND: Downy mildew of foxtail millet, which is caused by the biotrophic oomycete Sclerospora graminicola (Sacc.) Schroeter, is one of the most disruptive diseases. The foxtail millet-S. graminicola interaction is largely unexplored. Transcriptome sequencing technology can help to reveal the interaction mechanism between foxtail millet and its pathogens. RESULTS: Transmission electron microscopy observations of leaves infected with S. graminicola showed that the structures of organelles in the host cells gradually became deformed and damaged, or even disappeared from the 3- to 7-leaf stages. However, organelles in the leaves of resistant variety were rarely damaged. Moreover, the activities of seven cell wall degrading enzymes in resistant and susceptible varieties were also quite different after pathogen induction and most of enzymes activities were significantly higher in the susceptible variety JG21 than in the resistant variety G1 at all stages. Subsequently, we compared the transcriptional profiles between the G1 and JG21 in response to S. graminicola infection at 3-, 5-, and 7-leaf stages using RNA-Seq technology. A total of 473 and 1433 differentially expressed genes (DEGs) were identified in the resistant and susceptible varieties, respectively. The pathway analysis of the DEGs showed that the highly enriched categories were related to glutathione metabolism, plant hormone signalling, phenylalanine metabolism, and cutin, suberin and wax biosynthesis. Some defence-related genes were also revealed in the DEGs, including leucine-rich protein kinase, Ser/Thr protein kinase, peroxidase, cell wall degrading enzymes, laccases and auxin response genes. Our results also confirmed the linkage of transcriptomic data with qRT-PCR data. In particular, LRR protein kinase encoded by Seita.8G131800, Ser/Thr protein kinase encoded by Seita.2G024900 and Seita. 2G024800, which have played an essential resistant role during the infection by S. graminicola. CONCLUSIONS: Transcriptome sequencing revealed that host resistance to S. graminicola was likely due to the activation of defence-related genes, such as leucine-rich protein kinase and Ser/Thr protein kinase. Our study identified pathways and genes that contribute to the understanding of the interaction between foxtail millet and S. graminicola at the transcriptomic level. The results will help us better understand the resistance mechanism of foxtail millet against S. graminicola.


Assuntos
Oomicetos , Pennisetum , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Leucina/genética , Pennisetum/genética , Oomicetos/fisiologia , Perfilação da Expressão Gênica , Proteínas Quinases/genética , Transcriptoma
4.
PeerJ ; 10: e14099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213506

RESUMO

Anthocyanin is a natural pigment that has a functional role in plants to attract pollinating insects and is important in stress response. Foxtail millet (Setaria italica) is known as a nutritional crop with high resistance to drought and barren. However, the molecular mechanism regulating anthocyanin accumulation and the relationship between anthocyanin and the stress resistance of foxtail millet remains obscure. In this study, we screened hundreds of germplasm resources and obtained several varieties with purple plants in foxtail millet. By studying the purple-leaved B100 variety and the control variety, Yugu1 with green leaves, we found that B100 could accumulate a large amount of anthocyanin in the leaf epiderma, and B100 had stronger stress tolerance. Further transcriptome analysis revealed the differences in gene expression patterns between the two varieties. We identified nine genes encoding enzymes related to anthocyanin biosynthesis using quantitative PCR validation that showed significantly higher expression levels in B100 than Yugu1. The results of this study lay the foundation for the analysis of the molecular mechanism of anthocyanin accumulation in foxtail millet, and provided genetic resources for the molecular breeding of crops with high anthocyanin content.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Antocianinas/genética , Perfilação da Expressão Gênica
5.
Front Plant Sci ; 13: 928040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903230

RESUMO

Downy mildew of foxtail millet is an important oomycete disease caused by Sclerospora graminicola, affecting the yield and quality of the crop. Foxtail millet infected with S. graminicola exhibit symptoms of leaf yellowing and leaf cracking. To uncover the pathogenic mechanism of this disease, we explored the effects on chlorophyll synthesis and photosynthesis of foxtail millet leaves infected by S. graminicola. An elite foxtail millet variety, JG21, susceptible to S. graminicola, was used as for this study. S. graminicola inhibited chlorophyll synthesis and caused loose mesophyll cell arrangement. In addition, some cells were severely vacuolated in S. graminicola-infected foxtail millet leaves at the early stages of infection. S. graminicola could invade the mesophyll cells through haustoria which destroyed the chloroplast structure at the middle stages of infection causing significant accumulation of osmiophilic particles (OPs) and disintegrated chloroplast grana lamellae. Furthermore, foxtail millet leaves split longitudinally at the later stages of infection. Chlorophyll and carotenoid contents in infected leaves decreased significantly compared with those in the control. Net photosynthetic rate (Pn) of leaves and stomatal conductance showed a downward trend, and intercellular carbon dioxide concentrations increased significantly following the infection with S. graminicola. A total of 1,618 differentially expressed genes (DEGs) were detected between the control group and the treatment groups using RNA sequencing (RNA-Seq) among S1-S5 stages. DEGs associated with "photosynthesis" and "light reaction" were enriched. Gene expression patterns showed that 91.3% of 23 genes related to chlorophyll synthesis and photosynthesis, were significantly down-regulated than the control during S1-S5 stages. Based on the gene expression dataset, weighed gene co-expression network analysis (WGCNA) with 19 gene co-expression modules related to photosynthesis revealed six hub genes related to chlorophyll synthesis, which were suppressed during infection. The results suggest that infection of S. graminicola led to weak chlorophyll synthesis and rapid chloroplasts disappearance in foxtail millet. The defense responses and resistance of foxtail millet to S. graminicola were inhibited because chloroplast structure and function were destroyed in leaves, and the sexual reproduction in S. graminicola could be completed rapidly.

6.
J Agric Food Chem ; 70(20): 6272-6284, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575700

RESUMO

The mechanism underlying folate degradation in foxtail millet grains remains unclear. Here, we identified SiFBP (Setaria italica folate-binding protein) from foxtail millet. A phylogenetic tree revealed that FBPs have close genetic relationships among cereal crop species. Docking analysis and heterologous expression of SiFBP in yeast showed that it could bind folic acid (FA). The SiFBP localized to the plasma membrane in tobacco mesophyll cells by transient expression. In Arabidopsis, it was expressed specifically in the roots and germinating seeds. Overexpressing SiFBP in yeast and Arabidopsis significantly increased folate contents. Untargeted metabolome analysis revealed differentially accumulated metabolites between the transgenic lines (TLs) and wild type (WT); these metabolites were mainly enriched in the amino acid metabolism pathway. The relative contents of lysine and leucine, threonine, and l-methionine were significantly higher in the TLs than in WT. Genes related to the folate and lysine synthesis pathways were upregulated in the TLs. Thus, SiFBP can be used for biofortification of folate and important amino acids in crops via genetic engineering.


Assuntos
Arabidopsis , Ácido Fólico , Proteínas de Plantas , Setaria (Planta) , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte/genética , Ácido Fólico/metabolismo , Regulação da Expressão Gênica de Plantas , Lisina/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo
7.
Life (Basel) ; 11(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34833045

RESUMO

Plant lipoxygenases (LOXs), a kind of non-heme iron-containing dioxygenases, participate plant physiological activities (especially in response to biotic and abiotic stresses) through oxidizing various lipids. However, there was few investigations on LOXs in foxtail millet (Setaria italica). In this study, we identified the LOX gene family in foxtail millet, and divided the total 12 members into three sub-families on the basis of their phylogenetic relationships. Under salt and drought stress, LOX genes showed different expression patterns. Among them, only SiLOX7 showed up-regulated expression in Yugu1 (YG1) and Qinhuang2 (QH2), two stress-tolerant varieties, indicating that SiLOX7 may play an important role in responses to abiotic stress. Our research provides a basis for further investigation of the role of LOX genes in the adaptation to abiotic stresses and other possible biological functions in foxtail millet.

8.
Mol Plant ; 12(1): 59-70, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30408577

RESUMO

Plants employ receptor-like kinases (RLKs) and receptor-like proteins for rapid recognition of invading pathogens, and RLKs then transmit signals to receptor-like cytoplasmic kinases (RLCKs) to activate immune responses. RLKs are under fine regulation mediated by subcellular trafficking, which contributes to proper activation of plant immunity. In this study, we show that Arabidopsis thaliana RECEPTOR-LIKE KINASE 902 (RLK902) plays important roles in resistance to the bacterial pathogen Pseudomonas syringae, but not to the fungal powdery mildew pathogen Golovinomyces cichoracearum. RLK902 localizes at the plasma membrane and associates with ENHANCED DISEASE RESISTANCE 4 (EDR4), a protein involved in clathrin-mediated trafficking pathways. EDR4 and CLATHRIN HEAVY CHAIN 2 (CHC2) regulate the subcellular trafficking and accumulation of RLK902 protein. Furthermore, we found that RLK902 directly associates with the RLCK BRASSINOSTEROID-SIGNALING KINASE1 (BSK1), a key component of plant immunity, but not with other members of the FLAGELLIN SENSING 2 immune complex. RLK902 phosphorylates BSK1, and its Ser-230 is a key phosphorylation site critical for RLK902-mediated defense signaling. Taken together, our data indicate that EDR4 regulates plant immunity by modulating the subcellular trafficking and protein accumulation of RLK902, and that RLK902 transmits immune signals by phosphorylating BSK1.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/enzimologia , Doenças das Plantas/imunologia , Proteínas Quinases/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiologia , Resistência à Doença , Fosforilação , Doenças das Plantas/microbiologia , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Pseudomonas syringae/fisiologia , Transdução de Sinais
9.
Plant Physiol ; 176(4): 2991-3002, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29440595

RESUMO

Arabidopsis (Arabidopsis thaliana) immune receptor FLAGELLIN SENSING2 (FLS2) rapidly forms a complex to activate pathogen-associated molecular pattern-triggered immunity (PTI) upon perception of the bacterial protein flagellin. The receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALINGKINASE1 (BSK1) interacts with FLS2 and is critical for the activation of PTI. However, it is unknown how BSK1 transduces signals to activate downstream immune responses. We identified MEK Kinase5 (MAPKKK5) as a potential substrate of BSK1 by whole-genome phosphorylation analysis. In addition, we demonstrated that BSK1 interacts with and phosphorylates MAPKKK5. In the bsk1-1 mutant, the Ser-289 residue of MAPKKK5 was not phosphorylated as it was in the wild type. Similar to the bsk1 mutant, the mapkkk5 mutant displayed enhanced susceptibility to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae pv tomato DC3000, and to the fungal powdery mildew pathogen Golovinomyces cichoracearum Phosphorylation of the Ser-289 residue is not involved in MAPKKK5-triggered cell death but is critical for MAPKKK5-mediated resistance to both bacterial and fungal pathogens. Furthermore, MAPKKK5 interacts with multiple MAPK kinases, including MKK1, MKK2, MKK4, MKK5, and MKK6. Overall, these results indicate that BSK1 regulates plant immunity by phosphorylating MAPKKK5 and suggest a direct regulatory mode of signaling from the immune complex to the MAPK cascade.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MAP Quinase Quinase Quinase 5/genética , Mutação , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/fisiologia , Serina/genética , Serina/metabolismo
10.
Plant Cell ; 27(3): 857-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25747881

RESUMO

Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Cadeias Pesadas de Clatrina/metabolismo , Imunidade Vegetal , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Membrana Celular/metabolismo , Resistência à Doença , Endocitose , Endossomos/metabolismo , Genes Supressores , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Ligação Proteica , Transporte Proteico , Ácido Salicílico/metabolismo , Transdução de Sinais
11.
PLoS Genet ; 11(1): e1004945, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25617755

RESUMO

During exocytosis, the evolutionarily conserved exocyst complex tethers Golgi-derived vesicles to the target plasma membrane, a critical function for secretory pathways. Here we show that exo70B1 loss-of-function mutants express activated defense responses upon infection and express enhanced resistance to fungal, oomycete and bacterial pathogens. In a screen for mutants that suppress exo70B1 resistance, we identified nine alleles of TIR-NBS2 (TN2), suggesting that loss-of-function of EXO70B1 leads to activation of this nucleotide binding domain and leucine-rich repeat-containing (NLR)-like disease resistance protein. This NLR-like protein is atypical because it lacks the LRR domain common in typical NLR receptors. In addition, we show that TN2 interacts with EXO70B1 in yeast and in planta. Our study thus provides a link between the exocyst complex and the function of a 'TIR-NBS only' immune receptor like protein. Our data are consistent with a speculative model wherein pathogen effectors could evolve to target EXO70B1 to manipulate plant secretion machinery. TN2 could monitor EXO70B1 integrity as part of an immune receptor complex.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Transporte Vesicular/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/biossíntese , Morte Celular/genética , Resistência à Doença/imunologia , Exocitose/genética , Regulação da Expressão Gênica de Plantas , Imunoprecipitação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Transdução de Sinais , Proteínas de Transporte Vesicular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA